본문 바로가기
장바구니0

Fundamentals of Physics II: Electromagnetism, Optics, and Quantum Mechanics, Expanded Edition > 물리학

도서간략정보

Fundamentals of Physics II: Electromagnetism, Optics, and Quantum Mechanics, Expanded Edition
히트도서
판매가격 42,000원
저자 R. Shankar
도서종류 외국도서
출판사 Yale University Press
발행언어 영어
발행일 2020
페이지수 680
ISBN 9780300243789
배송비결제 주문시 결제
도서구매안내 온, 오프라인 서점에서 구매 하실 수 있습니다.

구매기능

  • 도서 정보

    도서 상세설명

    Table of Contents

    Preface xv

    1 Electrostatics I 1

    1.1 Review of F = ma 1

    1.2 Enter electricity 3

    1.3 Coulomb's law 8

    1.4 Properties of charge 10

    1.4.1 Superposition principle 12

    1.5 Verifying Coulomb's law 13

    1.6 The ratio of gravitational to electric forces 15

    1.7 Coulomb's law for continuous charge density 17

    2 The Electric Field 19

    2.1 Review of key ideas 19

    2.2 Digression on nuclear forces 20

    2.3 The electric field E 22

    2.4 Visualizing the field 25

    2.5 Field of a dipole 33

    2.5.1 Far field of dipole: general case 36

    2.6 Response to a field 38

    2.6.1 Dipole in a uniform field 39

    3 Gauss's Law I 42

    3.1 Field of an infinite line charge 43

    3.2 Field of an infinite sheet of charge 47

    3.3 Spherical charge distribution: Gauss's law 52

    3.4 Digression on the area vector dA 53

    3.4.1 Composition of areas 55

    3.4.2 An application of the area vector 57

    3.5 Gauss's law through pictures 59

    3.5.1 Continuous charge density 64

    4 Gauss's Law II: Applications 65

    4.1 Applications of Gauss's law 66

    4.2 Field inside a shell 69

    4.3 Field of an infinite charged wire, redux 72

    4.4 Field of an infinite plane, redux 74

    4.5 Conductors 75

    4.5.1 Field inside a perfect conductor is zero 76

    4.5.2 The net charge on a conductor will reside at the surface 77

    4.5.3 A conductor with a hole inside 78

    4.5.4 Field on the surface of a conductor 79

    5 The Coulomb Potential 81

    5.1 Conservative forces and potential energy 82

    5.2 Is the electrostatic field conservative? 88

    5.3 Path independence through pictures 92

    5.4 Potential and field of a dipole 93

    6 Conductors and Capacitors 97

    6.1 Cases where computing V from E is easier 99

    6.2 Visualizing V 101

    6.3 Equipotentials 103

    6.4 Method of images 104

    6.4.1 Proof of uniqueness (optional section) 110

    6.4.2 Additional properties of the potential V(r) 112

    6.5 Capacitors 113

    6.6 Energy stored in a capacitor 115

    6.7 Energy of a charge distribution 116

    7 Circuits and Currents 119

    7.1 Energy in the electric field 120

    7.2 Circuits and conductivity 121

    7.3 Circuits 126

    7.4 The battery and the EMF ε 130

    7.5 The RC circuit with a battery 135

    7.6 Miscellaneous circuits 138

    8 Magnetism I 142

    8.1 Experiments pointing to magnetism 142

    8.2 Examples of the Lorentz force, the cyclotron 147

    8.3 Lorentz force on current-carrying wires 151

    8.4 The magnetic dipole 154

    8.5 The DC motor 156

    9 Magnetism II: Biot-Savart Law 158

    9.1 Practice with Biot-Savart: field of a loop 160

    9.2 Microscopic description of a bar magnet 162

    9.3 Magnetic field of an infinite wire 164

    9.4 Ampére's law 167

    9.5 Maxwell's equations (static case) 172

    10 Ampère II, Faraday, and Lenz 174

    10.1 Field of an infinite wire, redux 175

    10.2 Field of a solenoid 179

    10.3 Faraday and Lenz 184

    10.4 Optional digression on Faraday's law 195

    11 More Faraday 200

    11.1 Betatron 200

    11.2 Generators 205

    11.3 Inductance 208

    11.4 Mutual inductance 211

    11.5 Self-inductance 214

    11.6 Energy in the magnetic field 217

    12 AC Circuits 220

    12.1 Review of inductors 226

    12.2 The LC circuit 226

    12.2.1 Driven LC circuit 229

    12.3 The LCR circuit 231

    12.3.1 Review of complex numbers 231

    12.3.2 Solving the LCR equation 236

    12.3.3 Visualizing Z 239

    12.4 Complex form of Ohm's law 241

    13 LCR Circuits and Displacement Current 244

    13.1 Analysis of LCR results 246

    13.1.1 Transients and the complementary solution 251

    13.2 Power of the complex numbers 253

    13.3 Displacement current 259

    14 Electromagnetic Waves 263

    14.1 The wave equation 266

    14.2 Restricted Maxwell equations in vacuum 270

    14.2.1 Maxwell equations involving infinitesimal cubes 270

    14.2.2 Maxwell equations involving infinitesimal loops 272

    14.3 The wave! 275

    14.4 Sinusoidal solution to the wave equation 277

    14.5 Energy in the electromagnetic wave 283

    14.6 Origin of electromagnetic waves 285

    14.7 Maxwell equations-the general case (optional) 286

    14.7.1 Maxwell equations involving infinitesimal cubes 286

    14.7.2 Maxwell equations involving infinitesimal loops 288

    14.7.3 Consequences for the restricted E and B 293

    14.8 From microscopic to macroscopic (optional) 294

    14.8.1 Maxwell equations involving cubes 295

    14.8.2 Maxwell equations involving loops 297

    15 Electromagnetism and Relativity 300

    15.1 Magnetism from Coulomb's law and relativity 301

    15.2 Relativistic invariance of electrodynamics 305

    15.3 Review of Lorentz transformations 305

    15.3.1 Implications for Newtonian mechanics 307

    15.4 Scalar and vector fields 309

    15.5 The derivative operator 312

    15.6 Lorentz scalars and vectors 315

    15.7 The four-current J 317

    15.7.1 Charge conservation and the four-current J 318

    15.8 The four-potential A 319

    15.8.1 Gauge invariance 322

    15.9 Wave equation for the four-vector A 324

    15.9.1 Why work with Vand A? 327

    15.10 The electromagnetic tensor F 328

    15.10.1 Tensors 328

    15.10.2 The electromagnetic field tensor F 332

    16 Optics I: Geometric Optics Revisited 336

    16.1 Geometric or ray optics 336

    16.2 Brief history of c 338

    16.3 Some highlights of geometric optics 340

    16.4 The law of reflection from Fermat's principle 343

    16.5 Snell's law from Fermat's principle 344

    16.6 Reflection off a curved surface by Fermat 346

    16.7 Elliptical mirrors and Fermat's principle 349

    16.8 Parabolic mirrors 352

    17 Optics II: More Mirrors and Lenses 355

    17.1 Spherical approximations to parabolic mirrors 355

    17.2 Image formation: geometric optics 357

    17.2.1 A midlife crisis 359

    17.3 Image formation by Fermat's principle 360

    17.4 Tricky cases 364

    17.4.1 Fermat's principle for virtual focal points 365

    17.4.2 Ray optics for virtual images 366

    17.5 Lenses à la Fermat 368

    17.6 Principle of least action 370

    17.7 The eye 372

    18 Wave Theory of Light 377

    18.1 Interference of waves 381

    18.2 Adding waves using real numbers 383

    18.3 Adding waves with complex numbers 385

    18.4 Analysis of interference 388

    18.5 Diffraction grating 394

    18.6 Single-slit diffraction 397

    18.7 Understanding reflection and crystal diffraction 398

    18.8 Light incident on an oil slick 401

    18.8.1 Normal incidence 401

    18.8.2 Oblique incidence 404

    19 Quantum Mechanics: The Main Experiment 406

    19.1 Double-slit experiment with light 407

    19.2 Trouble with Maxwell 407

    19.3 Digression on photons 412

    19.3.1 Photoelectric effect 412

    19.3.2 Compton effect 414

    19.4 Matter waves 415

    19.5 Photons versus electrons 420

    19.6 The Heisenberg uncertainty principle 422

    19.6.1 There are no states of well-defined position and momentum 423

    19.6.2 Heisenberg microscope 427

    19.7 Let there be light 430

    19.8 The wave function Ψ 435

    19.9 Collapse of the wave function 438

    19.10 Summary 439

    20 The Wave Function and Its Interpretation 442

    20.1 Probability in classical and quantum mechanics 446

    20.2 Getting to know Ψ 451

    20.3 Statistical concepts: mean and uncertainty 456

    21 Quantization and Measurement 460

    21.1 More on momentum states 462

    21.2 Single-valuedness and quantization of momentum 464

    21.2.1 Quantization 467

    21.2.2 The integral of Ψp(x) 468

    21.3 Measurement postulate: momentum 469

    21.3.1 An example solvable by inspection 476

    21.3.2 Using a normalized Ψ 478

    21.4 Finding A(p) by computation 480

    21.5 More on Fourier's theorems 486

    21.6 Measurement postulate: general 491

    21.7 More than one variable 493

    22 States of Definite Energy 495

    22.1 Free particle on a ring 500

    22.1.1 Analysis of energy levels: degeneracy 503

    22.2 Thinking inside the box 507

    22.2.1 Particle in a well 507

    22.2.2 The box: an exact solution 516

    22.3 Energy measurement in the box 521

    23 Scattering and Dynamics 524

    23.1 Quantum scattering 524

    23.1.1 Scattering for E > V0 526

    23.1.2 Scattering for E < V0 530

    23.2 Tunneling 531

    23.3 Quantum dynamics 533

    23.3.1 A solution of the time-dependent Schrödinger equation 535

    23.3.2 Derivation of the particular solution ΨE(x,t) 536

    23.4 Special properties of the product solution 538

    23.5 General solution for time evolution 541

    23.5.1 Time evolution: a more complicated example 545

    24 Summary and Outlook 550

    24.1 Postulates: first pass 550

    24.2 Refining the postulates 554

    24.2.1 Toward a compact set of postulates 555

    24.2.2 Eigenvalue problem 556

    24.2.3 The Dirac delta function and the operator X 558

    24.3 Postulates: final 565

    24.4 Many particles, bosons, and fermions 566

    24.4.1 Identical versus indistinguishable 567

    24.4.2 Implications for atomic structure 574

    24.5 Energy-time uncertainty principle 576

    24.6 What next? 583

    Constants 585

    Index 587

  • 사용후기

    사용후기가 없습니다.

  • 배송/교환정보

    배송정보

    배송 안내 입력전입니다.

    교환/반품

    교환/반품 안내 입력전입니다.

선택하신 도서가 장바구니에 담겼습니다.

계속 둘러보기 장바구니보기
회사소개 개인정보 이용약관
Copyright © 2001-2019 도서출판 홍릉. All Rights Reserved.
상단으로